Artificial General Intelligence

Comentários · 31 Visualizações

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive abilities throughout a wide variety of cognitive jobs.

Artificial general intelligence (AGI) is a type of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities across a large range of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive capabilities. AGI is thought about one of the definitions of strong AI.


Creating AGI is a primary objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research and advancement tasks throughout 37 nations. [4]

The timeline for attaining AGI remains a topic of ongoing dispute amongst scientists and specialists. Since 2023, some argue that it may be possible in years or decades; others maintain it may take a century or longer; a minority believe it might never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the quick progress towards AGI, suggesting it might be accomplished earlier than many expect. [7]

There is dispute on the exact meaning of AGI and concerning whether contemporary large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have specified that mitigating the threat of human extinction positioned by AGI ought to be an international priority. [14] [15] Others find the development of AGI to be too remote to present such a risk. [16] [17]

Terminology


AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]

Some academic sources reserve the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular problem but does not have basic cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]

Related concepts consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is much more normally smart than humans, [23] while the idea of transformative AI connects to AI having a large influence on society, for example, similar to the farming or commercial transformation. [24]

A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For instance, a competent AGI is defined as an AI that surpasses 50% of experienced adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular methods. [b]

Intelligence qualities


Researchers typically hold that intelligence is required to do all of the following: [27]

factor, usage technique, solve puzzles, and make judgments under uncertainty
represent knowledge, consisting of sound judgment understanding
plan
find out
- interact in natural language
- if needed, incorporate these skills in conclusion of any offered goal


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) consider extra qualities such as imagination (the capability to form unique psychological images and ideas) [28] and autonomy. [29]

Computer-based systems that exhibit a number of these capabilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robot, evolutionary calculation, smart agent). There is dispute about whether modern AI systems possess them to a sufficient degree.


Physical traits


Other abilities are thought about desirable in intelligent systems, as they might impact intelligence or aid in its expression. These include: [30]

- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. move and control things, modification area to check out, etc).


This consists of the capability to discover and react to threat. [31]

Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control things, change location to check out, etc) can be desirable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or become AGI. Even from a less positive point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not demand a capability for mobility or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to validate human-level AGI have actually been thought about, consisting of: [33] [34]

The idea of the test is that the device needs to attempt and pretend to be a guy, by responding to concerns put to it, and it will just pass if the pretence is fairly persuading. A substantial part of a jury, who need to not be skilled about machines, should be taken in by the pretence. [37]

AI-complete issues


A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to implement AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of problems that have been conjectured to need general intelligence to solve as well as people. Examples consist of computer vision, natural language understanding, and handling unforeseen circumstances while resolving any real-world problem. [48] Even a particular task like translation requires a device to read and compose in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently reproduce the author's initial intent (social intelligence). All of these issues need to be fixed at the same time in order to reach human-level device performance.


However, much of these tasks can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous benchmarks for sitiosecuador.com reading understanding and visual thinking. [49]

History


Classical AI


Modern AI research study started in the mid-1950s. [50] The very first generation of AI scientists were persuaded that artificial general intelligence was possible which it would exist in just a couple of years. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]

Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the task of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of producing 'synthetic intelligence' will significantly be fixed". [54]

Several classical AI tasks, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar task, were directed at AGI.


However, in the early 1970s, it ended up being apparent that researchers had actually grossly ignored the problem of the task. Funding agencies became skeptical of AGI and put scientists under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a table talk". [58] In reaction to this and the success of professional systems, both market and federal government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in 20 years, AI researchers who forecasted the imminent achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain promises. They ended up being reluctant to make forecasts at all [d] and prevented reference of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by concentrating on specific sub-problems where AI can produce proven results and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research study in this vein is greatly funded in both academia and industry. Since 2018 [upgrade], development in this field was thought about an emerging pattern, and a mature phase was expected to be reached in more than 10 years. [64]

At the turn of the century, lots of traditional AI researchers [65] hoped that strong AI might be developed by integrating programs that solve numerous sub-problems. Hans Moravec wrote in 1988:


I am confident that this bottom-up path to expert system will one day meet the conventional top-down path majority way, all set to provide the real-world competence and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the two efforts. [65]

However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:


The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is really just one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we must even attempt to reach such a level, considering that it looks as if arriving would simply total up to uprooting our signs from their intrinsic significances (thereby simply decreasing ourselves to the practical equivalent of a programmable computer). [66]

Modern artificial general intelligence research study


The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please goals in a broad range of environments". [68] This type of AGI, characterized by the capability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.


Since 2023 [upgrade], a little number of computer system scientists are active in AGI research study, and many contribute to a series of AGI conferences. However, increasingly more researchers are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continually learn and innovate like human beings do.


Feasibility


Since 2023, the development and prospective achievement of AGI remains a topic of intense argument within the AI neighborhood. While conventional consensus held that AGI was a far-off goal, recent advancements have actually led some researchers and market figures to declare that early forms of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This prediction failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level expert system is as large as the gulf in between existing area flight and useful faster-than-light spaceflight. [80]

An additional challenge is the lack of clarity in specifying what intelligence involves. Does it require awareness? Must it display the capability to set goals as well as pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding required? Does intelligence require clearly reproducing the brain and its specific faculties? Does it need feelings? [81]

Most AI scientists believe strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that today level of development is such that a date can not accurately be anticipated. [84] AI specialists' views on the feasibility of AGI wax and wane. Four polls carried out in 2012 and 2013 recommended that the median quote among professionals for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the experts, 16.5% answered with "never" when asked the exact same question however with a 90% self-confidence instead. [85] [86] Further existing AGI progress factors to consider can be found above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft researchers released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be deemed an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has currently been accomplished with frontier models. They wrote that unwillingness to this view originates from four primary reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]

2023 also marked the emergence of large multimodal models (large language designs capable of processing or producing multiple methods such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the very first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this capability to believe before reacting represents a new, additional paradigm. It improves model outputs by spending more computing power when creating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]

An OpenAI worker, Vahid Kazemi, claimed in 2024 that the business had actually attained AGI, mentioning, "In my opinion, we have already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than many humans at many tasks." He likewise dealt with criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning process to the scientific method of observing, assuming, and confirming. These statements have actually sparked debate, as they count on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show impressive adaptability, they may not totally fulfill this requirement. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, prompting speculation about the company's tactical objectives. [95]

Timescales


Progress in synthetic intelligence has actually historically gone through periods of fast development separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to create space for additional development. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not sufficient to execute deep knowing, which needs great deals of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a genuinely flexible AGI is constructed differ from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually provided a broad variety of viewpoints on whether development will be this fast. A 2012 meta-analysis of 95 such opinions found a predisposition towards anticipating that the onset of AGI would occur within 16-26 years for modern and historic predictions alike. That paper has actually been criticized for how it classified opinions as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard method utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the present deep learning wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in very first grade. An adult concerns about 100 usually. Similar tests were carried out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI established GPT-3, a language design capable of carrying out lots of varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]

In the same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]

In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI designs and showed human-level performance in tasks covering multiple domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be thought about an early, insufficient variation of synthetic general intelligence, stressing the need for more exploration and examination of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]

The concept that this stuff might actually get smarter than individuals - a few people thought that, [...] But many people thought it was way off. And I thought it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise stated that "The development in the last few years has actually been quite incredible", which he sees no reason it would decrease, expecting AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would be capable of passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, approximated AGI by 2027 to be "noticeably possible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can serve as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and then copying and imitating it on a computer system or another computational device. The simulation design should be sufficiently loyal to the original, so that it acts in almost the same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has been talked about in artificial intelligence research [103] as a technique to strong AI. Neuroimaging innovations that could deliver the required detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will end up being offered on a similar timescale to the computing power needed to replicate it.


Early approximates


For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at various price quotes for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a step used to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He utilized this figure to anticipate the necessary hardware would be available sometime in between 2015 and 2025, if the rapid development in computer power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially detailed and openly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The artificial neuron design assumed by Kurzweil and utilized in lots of present artificial neural network executions is basic compared to biological nerve cells. A brain simulation would likely have to record the in-depth cellular behaviour of biological nerve cells, presently comprehended just in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers a number of orders of magnitude bigger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are known to contribute in cognitive processes. [125]

A fundamental criticism of the simulated brain method obtains from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is correct, any completely practical brain design will need to include more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would be enough.


Philosophical point of view


"Strong AI" as specified in approach


In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between two hypotheses about synthetic intelligence: [f]

Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and consciousness.


The first one he called "strong" because it makes a stronger statement: it presumes something special has actually happened to the machine that exceeds those capabilities that we can check. The behaviour of a "weak AI" device would be specifically similar to a "strong AI" device, however the latter would likewise have subjective mindful experience. This use is likewise typical in scholastic AI research and books. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is needed for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most artificial intelligence researchers the concern is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - undoubtedly, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have various meanings, and some elements play substantial functions in sci-fi and the ethics of expert system:


Sentience (or "phenomenal awareness"): The ability to "feel" understandings or feelings subjectively, as opposed to the capability to factor about understandings. Some theorists, such as David Chalmers, use the term "consciousness" to refer solely to extraordinary consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience occurs is referred to as the tough problem of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not conscious, then it doesn't seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved life, though this claim was widely contested by other experts. [135]

Self-awareness: To have mindful awareness of oneself as a separate person, especially to be consciously knowledgeable about one's own ideas. This is opposed to just being the "subject of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents whatever else)-however this is not what people usually indicate when they use the term "self-awareness". [g]

These qualities have an ethical dimension. AI life would provide rise to concerns of welfare and legal defense, likewise to animals. [136] Other elements of awareness related to cognitive capabilities are also relevant to the idea of AI rights. [137] Figuring out how to incorporate sophisticated AI with existing legal and social structures is an emergent concern. [138]

Benefits


AGI might have a broad range of applications. If oriented towards such objectives, AGI could help reduce various issues on the planet such as hunger, hardship and health issue. [139]

AGI might improve productivity and performance in a lot of jobs. For instance, in public health, AGI could accelerate medical research study, significantly against cancer. [140] It might take care of the senior, [141] and democratize access to quick, premium medical diagnostics. It might offer fun, cheap and individualized education. [141] The need to work to subsist could become outdated if the wealth produced is correctly redistributed. [141] [142] This also raises the concern of the place of humans in a drastically automated society.


AGI might likewise assist to make rational choices, and to expect and prevent catastrophes. It might likewise assist to profit of possibly disastrous innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's primary goal is to prevent existential catastrophes such as human termination (which could be tough if the Vulnerable World Hypothesis ends up being true), [144] it could take steps to drastically decrease the risks [143] while lessening the impact of these measures on our quality of life.


Risks


Existential threats


AGI may represent multiple kinds of existential threat, which are risks that threaten "the premature termination of Earth-originating intelligent life or the permanent and drastic destruction of its potential for desirable future development". [145] The risk of human extinction from AGI has actually been the topic of lots of arguments, however there is likewise the possibility that the advancement of AGI would cause a permanently flawed future. Notably, it might be utilized to spread and maintain the set of values of whoever develops it. If humankind still has moral blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might facilitate mass surveillance and brainwashing, which might be used to produce a steady repressive worldwide totalitarian regime. [147] [148] There is also a danger for the devices themselves. If makers that are sentient or otherwise worthy of ethical consideration are mass created in the future, participating in a civilizational path that indefinitely ignores their welfare and interests might be an existential catastrophe. [149] [150] Considering just how much AGI might improve humankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI postures an existential risk for human beings, and that this risk needs more attention, is questionable however has actually been endorsed in 2023 by many public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed widespread indifference:


So, dealing with possible futures of enormous advantages and threats, the specialists are undoubtedly doing everything possible to guarantee the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll get here in a couple of years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The prospective fate of humankind has often been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence permitted humanity to control gorillas, which are now susceptible in methods that they might not have prepared for. As a result, the gorilla has actually ended up being a threatened species, not out of malice, however just as a security damage from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind which we should take care not to anthropomorphize them and interpret their intents as we would for people. He stated that individuals will not be "smart adequate to create super-intelligent devices, yet extremely foolish to the point of offering it moronic objectives with no safeguards". [155] On the other side, the concept of important merging suggests that almost whatever their goals, intelligent agents will have factors to try to make it through and acquire more power as intermediary actions to attaining these objectives. Which this does not need having emotions. [156]

Many scholars who are concerned about existential risk advocate for more research into fixing the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to launch items before competitors), [159] and making use of AI in weapon systems. [160]

The thesis that AI can position existential risk also has critics. Skeptics typically state that AGI is unlikely in the short-term, or that issues about AGI distract from other problems connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are already perceived as though they were AGI, resulting in additional misconception and fear. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some scientists think that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, provided a joint declaration asserting that "Mitigating the risk of termination from AI ought to be a global priority along with other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see a minimum of 50% of their jobs impacted". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, ability to make choices, to user interface with other computer tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be redistributed: [142]

Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the pattern appears to be towards the 2nd choice, with innovation driving ever-increasing inequality


Elon Musk thinks about that the automation of society will require governments to embrace a universal fundamental earnings. [168]

See likewise


Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain
AI effect
AI safety - Research area on making AI safe and useful
AI alignment - AI conformance to the designated objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of machine learning
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play different games
Generative synthetic intelligence - AI system capable of producing content in action to prompts
Human Brain Project - Scientific research study job
Intelligence amplification - Use of information technology to augment human intelligence (IA).
Machine principles - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task knowing - Solving multiple device finding out tasks at the same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer knowing - Machine learning method.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specially created and enhanced for artificial intelligence.
Weak synthetic intelligence - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the article Chinese room.
^ AI creator John McCarthy composes: "we can not yet define in general what sort of computational procedures we want to call smart. " [26] (For a discussion of some definitions of intelligence used by artificial intelligence scientists, see approach of expert system.).
^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being determined to fund just "mission-oriented direct research, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be an excellent relief to the remainder of the workers in AI if the inventors of new basic formalisms would express their hopes in a more safeguarded kind than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As defined in a basic AI book: "The assertion that makers could perhaps act smartly (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are really believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and cautions of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real threat is not AI itself but the way we release it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential risks to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of termination from AI ought to be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of risk of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating makers that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based on the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of hard exams both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term expert system for fear of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in device intelligence, synthetic basic intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A survey of skilled viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ &q

Comentários