Artificial General Intelligence

Comentários · 44 Visualizações

Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities across a wide variety of cognitive jobs.

Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive abilities. AGI is considered one of the meanings of strong AI.


Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and advancement tasks throughout 37 nations. [4]

The timeline for accomplishing AGI remains a subject of ongoing debate among researchers and specialists. As of 2023, some argue that it may be possible in years or decades; others maintain it may take a century or longer; a minority believe it might never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the quick progress towards AGI, recommending it could be accomplished faster than lots of anticipate. [7]

There is dispute on the specific meaning of AGI and relating to whether modern-day large language designs (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in science fiction and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have mentioned that alleviating the threat of human termination positioned by AGI needs to be a worldwide priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a danger. [16] [17]

Terminology


AGI is also known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]

Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one particular problem but lacks basic cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]

Related concepts consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is far more typically smart than humans, [23] while the idea of transformative AI relates to AI having a large effect on society, for instance, similar to the agricultural or commercial transformation. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a competent AGI is specified as an AI that outshines 50% of competent adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular definitions, and some researchers disagree with the more popular approaches. [b]

Intelligence qualities


Researchers typically hold that intelligence is needed to do all of the following: [27]

factor, usage method, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of sound judgment knowledge
strategy
discover
- interact in natural language
- if essential, integrate these abilities in completion of any provided goal


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra traits such as imagination (the ability to form unique psychological images and concepts) [28] and autonomy. [29]

Computer-based systems that exhibit a number of these capabilities exist (e.g. see computational creativity, automated thinking, choice support group, robot, evolutionary computation, intelligent representative). There is dispute about whether contemporary AI systems possess them to an appropriate degree.


Physical traits


Other abilities are considered preferable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]

- the ability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. relocation and control objects, change location to explore, and so on).


This includes the ability to detect and react to threat. [31]

Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate objects, change location to explore, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a particular physical embodiment and thus does not require a capacity for locomotion or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests meant to confirm human-level AGI have actually been thought about, consisting of: [33] [34]

The concept of the test is that the machine needs to try and pretend to be a male, by addressing questions put to it, and it will only pass if the pretence is reasonably persuading. A considerable portion of a jury, who must not be expert about devices, should be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to execute AGI, due to the fact that the solution is beyond the abilities of a purpose-specific algorithm. [47]

There are lots of problems that have actually been conjectured to need basic intelligence to solve in addition to people. Examples consist of computer vision, natural language understanding, and handling unanticipated circumstances while solving any real-world problem. [48] Even a specific job like translation requires a machine to check out and write in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these issues need to be fixed concurrently in order to reach human-level maker efficiency.


However, a number of these jobs can now be performed by modern big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of standards for checking out comprehension and visual reasoning. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were persuaded that artificial basic intelligence was possible and that it would exist in just a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]

Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'expert system' will substantially be solved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar task, were directed at AGI.


However, in the early 1970s, it ended up being apparent that researchers had grossly undervalued the trouble of the task. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In reaction to this and the success of professional systems, both market and federal government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI researchers who forecasted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They ended up being hesitant to make predictions at all [d] and prevented mention of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven outcomes and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation industry, and research study in this vein is heavily funded in both academic community and market. Since 2018 [update], advancement in this field was considered an emerging trend, and a fully grown phase was expected to be reached in more than 10 years. [64]

At the millenium, lots of mainstream AI scientists [65] hoped that strong AI might be developed by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:


I am confident that this bottom-up path to expert system will one day fulfill the traditional top-down path more than half way, prepared to provide the real-world proficiency and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven uniting the two efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we should even try to reach such a level, since it appears getting there would just amount to uprooting our symbols from their intrinsic significances (therefore simply reducing ourselves to the functional equivalent of a programmable computer system). [66]

Modern artificial general intelligence research study


The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to satisfy objectives in a wide range of environments". [68] This kind of AGI, characterized by the ability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a number of guest speakers.


Since 2023 [update], a little number of computer system researchers are active in AGI research, and lots of add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended learning, [76] [77] which is the concept of enabling AI to constantly discover and innovate like people do.


Feasibility


As of 2023, the advancement and potential accomplishment of AGI stays a topic of intense debate within the AI community. While traditional agreement held that AGI was a distant objective, recent advancements have led some scientists and market figures to claim that early kinds of AGI may already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would need "unforeseeable and fundamentally unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]

A further obstacle is the absence of clarity in defining what intelligence requires. Does it require consciousness? Must it show the ability to set objectives as well as pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence need explicitly reproducing the brain and its particular professors? Does it need emotions? [81]

Most AI researchers think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that the present level of progress is such that a date can not precisely be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys carried out in 2012 and 2013 suggested that the mean estimate amongst professionals for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the professionals, 16.5% responded to with "never" when asked the same concern however with a 90% confidence rather. [85] [86] Further existing AGI development considerations can be found above Tests for confirming human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft researchers published a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be deemed an early (yet still incomplete) version of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of general intelligence has actually already been achieved with frontier models. They composed that hesitation to this view comes from four main reasons: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]

2023 also marked the emergence of big multimodal models (big language designs capable of processing or generating numerous methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when producing the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training data and training calculate power. [93] [94]

An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had actually attained AGI, stating, "In my viewpoint, we have currently achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than many human beings at many jobs." He likewise attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the clinical approach of observing, assuming, and confirming. These statements have triggered argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models show impressive adaptability, they may not totally fulfill this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the company's tactical intentions. [95]

Timescales


Progress in expert system has historically gone through periods of fast development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to develop space for further progress. [82] [98] [99] For instance, the computer system hardware available in the twentieth century was not adequate to implement deep learning, which needs great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that estimates of the time needed before a truly flexible AGI is constructed vary from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a vast array of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards forecasting that the beginning of AGI would take place within 16-26 years for modern and historic predictions alike. That paper has been criticized for how it classified viewpoints as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional approach used a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in first grade. An adult concerns about 100 typically. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model efficient in carrying out many varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]

In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]

In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and demonstrated human-level performance in jobs spanning numerous domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 might be thought about an early, insufficient variation of artificial basic intelligence, stressing the need for more exploration and examination of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]

The idea that this stuff might in fact get smarter than people - a few people believed that, [...] But many people thought it was way off. And I believed it was way off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise stated that "The development in the last few years has actually been pretty extraordinary", which he sees no reason why it would slow down, expecting AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "noticeably possible". [115]

Whole brain emulation


While the advancement of transformer models like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can serve as an alternative method. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational gadget. The simulation model should be sufficiently devoted to the initial, so that it acts in virtually the exact same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been talked about in synthetic intelligence research [103] as a method to strong AI. Neuroimaging technologies that might deliver the essential detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power required to imitate it.


Early estimates


For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at numerous price quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He utilized this figure to anticipate the necessary hardware would be readily available sometime between 2015 and 2025, if the rapid growth in computer power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially comprehensive and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The synthetic neuron model assumed by Kurzweil and utilized in many existing artificial neural network executions is easy compared with biological nerve cells. A brain simulation would likely have to catch the detailed cellular behaviour of biological nerve cells, presently understood just in broad overview. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the estimates do not represent glial cells, which are understood to play a role in cognitive processes. [125]

An essential criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is correct, any totally practical brain model will require to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.


Philosophical perspective


"Strong AI" as specified in philosophy


In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (only) imitate it believes and has a mind and awareness.


The very first one he called "strong" due to the fact that it makes a more powerful statement: it presumes something special has actually occurred to the machine that goes beyond those abilities that we can check. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" maker, but the latter would also have subjective mindful experience. This use is likewise common in scholastic AI research and books. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most expert system researchers the question is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - undoubtedly, there would be no way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have various meanings, and some elements play considerable roles in science fiction and the ethics of expert system:


Sentience (or "remarkable awareness"): The capability to "feel" perceptions or emotions subjectively, instead of the ability to factor about perceptions. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer specifically to phenomenal awareness, which is roughly comparable to life. [132] Determining why and how subjective experience emerges is referred to as the hard issue of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had attained sentience, though this claim was commonly disputed by other specialists. [135]

Self-awareness: To have conscious awareness of oneself as a separate person, especially to be purposely familiar with one's own ideas. This is opposed to merely being the "topic of one's believed"-an os or debugger is able to be "mindful of itself" (that is, to represent itself in the exact same way it represents whatever else)-however this is not what individuals normally indicate when they use the term "self-awareness". [g]

These qualities have a moral measurement. AI sentience would offer rise to concerns of welfare and legal defense, similarly to animals. [136] Other aspects of consciousness related to cognitive capabilities are also relevant to the concept of AI rights. [137] Determining how to incorporate sophisticated AI with existing legal and social frameworks is an emerging concern. [138]

Benefits


AGI might have a wide range of applications. If oriented towards such objectives, AGI could assist mitigate various problems worldwide such as hunger, hardship and health issue. [139]

AGI could improve efficiency and efficiency in many jobs. For instance, in public health, AGI could accelerate medical research, significantly versus cancer. [140] It could take care of the senior, [141] and equalize access to quick, high-quality medical diagnostics. It might offer fun, low-cost and tailored education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is properly redistributed. [141] [142] This also raises the question of the location of human beings in a significantly automated society.


AGI might also help to make reasonable choices, and to expect and prevent disasters. It could also help to profit of potentially devastating technologies such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's primary objective is to prevent existential catastrophes such as human extinction (which could be hard if the Vulnerable World Hypothesis turns out to be true), [144] it might take procedures to dramatically decrease the dangers [143] while minimizing the effect of these procedures on our lifestyle.


Risks


Existential dangers


AGI may represent numerous kinds of existential threat, which are risks that threaten "the premature termination of Earth-originating intelligent life or the permanent and drastic destruction of its potential for desirable future development". [145] The risk of human extinction from AGI has actually been the subject of lots of arguments, but there is likewise the possibility that the advancement of AGI would lead to a permanently problematic future. Notably, it might be utilized to spread out and maintain the set of values of whoever establishes it. If mankind still has moral blind spots similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might assist in mass surveillance and brainwashing, which might be used to create a stable repressive around the world totalitarian program. [147] [148] There is also a risk for the devices themselves. If makers that are sentient or otherwise deserving of moral consideration are mass developed in the future, taking part in a civilizational course that indefinitely disregards their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI could improve humankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI postures an existential threat for human beings, and that this danger needs more attention, is controversial however has been backed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized extensive indifference:


So, dealing with possible futures of enormous advantages and dangers, the experts are definitely doing whatever possible to ensure the very best outcome, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll get here in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]

The possible fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence allowed humankind to dominate gorillas, which are now susceptible in methods that they might not have prepared for. As an outcome, the gorilla has ended up being a threatened types, not out of malice, but simply as a collateral damage from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humankind and that we must be cautious not to anthropomorphize them and analyze their intents as we would for humans. He stated that people will not be "clever adequate to design super-intelligent makers, yet unbelievably dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the principle of instrumental merging recommends that practically whatever their objectives, intelligent representatives will have factors to try to survive and get more power as intermediary actions to achieving these objectives. And that this does not need having feelings. [156]

Many scholars who are concerned about existential threat advocate for more research into resolving the "control issue" to answer the question: what types of safeguards, algorithms, or architectures can developers implement to increase the possibility that their recursively-improving AI would continue to act in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could result in a race to the bottom of security preventative measures in order to release items before competitors), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can posture existential risk likewise has detractors. Skeptics generally state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other issues associated with present AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are already perceived as though they were AGI, causing more misconception and fear. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some researchers think that the interaction campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, issued a joint statement asserting that "Mitigating the danger of termination from AI need to be a worldwide priority together with other societal-scale dangers such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their tasks impacted". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, capability to make choices, to user interface with other computer system tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]

Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up miserably bad if the machine-owners effectively lobby versus wealth redistribution. Up until now, the pattern appears to be towards the second choice, with technology driving ever-increasing inequality


Elon Musk thinks about that the automation of society will require federal governments to embrace a universal fundamental income. [168]

See also


Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI impact
AI safety - Research area on making AI safe and useful
AI alignment - AI conformance to the intended objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play various video games
Generative artificial intelligence - AI system efficient in generating material in reaction to triggers
Human Brain Project - Scientific research job
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of man-made devices.
Moravec's paradox.
Multi-task learning - Solving numerous device finding out jobs at the exact same time.
Neural scaling law - Statistical law in machine knowing.
Outline of artificial intelligence - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Artificial intelligence method.
Loebner Prize - Annual AI competitors.
Hardware for artificial intelligence - Hardware specifically created and optimized for expert system.
Weak expert system - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet define in basic what type of computational procedures we desire to call intelligent. " [26] (For a discussion of some definitions of intelligence used by expert system scientists, see viewpoint of expert system.).
^ The Lighthill report specifically criticized AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being figured out to fund just "mission-oriented direct research, rather than basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the workers in AI if the innovators of new general formalisms would express their hopes in a more protected kind than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a standard AI book: "The assertion that makers might possibly act wisely (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that devices that do so are really thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic general intelligence benefits all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020.
^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton stops Google and warns of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real risk is not AI itself but the method we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential threats to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of extinction from AI should be a global priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart traits is based on the subjects covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of tough examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term expert system for fear of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in machine intelligence, synthetic basic intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or archmageriseswiki.com damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of professional opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 2283765

Comentários